X-ray crystallographic data on aluminum silicon carbide, α -Al₄SiC₄ and Al₄Si₂C₅

ZENZABURO INOUE, YOSHIZO INOMATA, HIDEHIKO TANAKA National Institute for Researches in Inorganic Materials, Namiki 1-1, Sakura-mura, Niihari-gun, Ibaraki 300-31, Japan

HARUO KAWABATA Pacific Metals Co, Ltd, Akada-machi-1, Toyama 981, Japan

Single-crystal and powder X-ray crystallographic data on α -Al₄SiC₄ and Al₄Si₂C₅ are given, and their respective space groups are $P6_3mc$ and $R\overline{3}m$. Powder X-ray diffraction lines are individually indexed in the 2θ -range from 5° to 110°. The unit cell dimensions obtained from a least-square computer program are a = 3.2771 Å (± 0.0001 Å), c =21.676 Å (± 0.002) for α -Al₄SiC₄ and a = 3.2512 Å (± 0.0002 Å), c = 40.1078 Å $(\pm 0.0027 \text{ Å})$ for Al₄Si₂C₅. In addition, it is proposed that the crystal structures of α -Al₄SiC₄ and Al₄Si₂C₅ may be formed by substituting SiC-layers for AlN-layers in the Al₅C₃N and Al₆C₃N₂ structures.

1. Introduction

X-ray powder diffraction data of α - and β aluminium silicon carbides of Al₄SiC₄ was first given by Barczak [1] in 1961. Subsequently, a new unit cell dimension of α -Al₄SiC₄, different to that of Barczak, was proposed by Schneider [2] in 1978, who gave a new index based on the X-ray powder diffraction lines of α -Al₄SiC₄. Recently we have succeeded [3, 4] in synthesizing the pure phase of α -Al₄SiC₄ and Al₄Si₂C₅. The following is an attempt to interpret the crystallographic data obtained from the X-ray single-crystal method and the powder diffraction method for these crystals. The X-ray powder diffraction lines in the 2θ -range from 5° to 110° are given with their index, d-values and relative intensity distributions. Their space groups have been identified as $P6_3mc$ for α -Al₄SiC₄ and $R\overline{3}m$ for Al₄Si₂C₅ using X-ray single-crystal diffraction techniques. The unit cell dimensions obtained by the least-square computer program are also given as $a = 3.2771 \pm 0.0001$ Å, c = 21.676 ± 0.002 Å for α -Al₄SiC₄ and $a = 3.2512 \pm$ $0.0002 \text{ Å}, c = 40.1078 \pm 0.0027 \text{ Å}$ for the corresponding hexagonal lattice of Al₄Si₂C₅. The crystal structures of α -Al₄SiC₄ and Al₄Si₂C₅ are proposed as being similar to those of Al_5C_3N

and $Al_6C_3N_2$, respectively. This is supported by the good agreement between observed and calculated relative intensity distributions of powder X-ray diffraction data on Al_4SiC_4 and $Al_4Si_2C_5$, respectively.

2. Synthesis of α -Al₄SiC₄ and Al₄Si₂C₅

Silicon carbide (Ibigawa Denko Co Ltd, β -type, particle size $3 \mu m$, purity > 99.9%, oxygen content $\approx 0.2\, wt\,\%)$ and $Al_4\,C_3$ powder (Alfa Products Co, -100 mesh) were used in the synthesis of aluminium silicon carbide. The amount of each powder used was in conformity with the compositions of $Al_4 SiC_4$ and $Al_4 Si_2 C_5$. The ingredients were individually mixed in a polyethylene ball mill. The mixture of $Al_4 SiC_4$ composition was packed into a graphite die (15 mm diameter) and heated by r.f. current up to 2000° C at a rate of 50° C min⁻¹ in an argon atmosphere. The uniaxial pressure for hot-pressing was avoided in this procedure, because the specimen forms a melt at that temperature. After heating at 2000° C for a few minutes, the specimen was cooled to 1900° C at a rate of 5° C min⁻¹, then the electric power of furnace was turned off. The time constant calculated from the cooling curves was about 3 min. After cooling, α -Al₄SiC₄ specimen was recovered from the die. The weight loss observed was ~ 3% during the heating process.

The mixed ingredients of Al₄Si₂C₅ composition were packed into a graphite die and heated by r.f. current at a rate of 50° C min⁻¹ up to 1970° C in an argon atmosphere. The specimen was maintained at that temperature for a few minutes and then cooled rapidly by turning off the electric power to the furnace. The time constant calculated from the recorded cooling curves was ~ 0.3 min. In the procedure mentioned above, the uniaxial hot-pressing process was avoided so as to prevent the extrusion of the specimen from die. After cooling, very small leaflet-like crystals of Al₄Si₂C₅ were found in the open hole of the specimen. The specimen consisted mainly of Al₄Si₂C₅ together with a small amount of α -Al₄SiC₄. Al₄Si₂C₄ crystals were synthesized only when the specimen was rapidly cooled from 1970° C to 24° C. If it was cooled slowly from 1970° C to 1900° C, the Al₄Si₂C₄ phase did not appear, α -Al₄SiC₄ and silicon carbide being formed instead.

3. X-ray single-crystal data

3.1. Single-crystal data of α -Al₄SiC₄

Small flake-like single crystals of α -Al₄SiC₄ grew mainly in the opening hole of the specimen or on its surface. These crystals bore polysynthetic twinning with (001) plane, appeared transparent, and were a yellow colour. The average size of the crystals was 0.2 mm diameter and 0.02 mm thick. A good crystal of $0.2 \text{ mm} \times 0.2 \text{ mm} \times 0.02 \text{ mm}$ was selected by optical microscopy for X-ray single-crystal determination. The unit cell dimension and space group were revealed by the singlecrystal method using a Weissenberg camera and a precession camera. As a result, the approximate unit cell constants were found to be a = 3.27 Å, c = 21.63 Å in the hexagonal lattice. The $(h \circ l)$ and (h k 2) reciprocal plane taken by the precession camera using Mo radiation are shown in Fig. 1. The condition limiting possible reflections are as follows:

000l:
$$l = 2n$$

 $hh \overline{2h}l$: $l = 2n$
 $hkil$: if $h - k = 3n$, then $l = 2n$.

On the basis of the systematic extinctions, the possible space groups of this crystal are P31c, P31c, P31c, P62c, P63mc or P63/mmc. However, the (h k 2) plane in Fig. 1 proves the existence of sixfold symmetry along the *c*-axis in this crystal. In addition, the existence of mirror symmetry perpendicular to [100] and parallel to [010] limits its space group to P63mc or P63/mmc.

3.2. Single-crystal data of Al₄Si₂C₅

A very small plate-like crystal, yellow in colour, of $Al_4Si_2C_5$, 0.1 mm diameter and 0.02 mm thick, was picked up for X-ray investigation. The unit cell dimension and space group were determined by the X-ray moving camera technique with Mo radiation. It was consequently revealed that the

Figure 1 Precession photographs of α -Al₄SiC₄ taken by Mo radiation. The reciprocal planes of right, $(h \ 0 \ l)$, and left, $(h \ k \ 2)$ are given.

Figure 2 Precession photographs of $Al_4 Si_2 C_5$. Left, $(h \ 0 \ l)$, and right, $(h \ k \ 0)$, planes are shown.

crystal lattice is intrinsically rhombohedral, with $a_0 = 13.50$ Å, $\alpha = 13.83^\circ$, and it can be compared with a hexagonal lattice with a = 3.25 Å, c = 40.11 Å. The $(h \circ l)$ and $(h k \circ)$ reciprocal planes with the hexagonal index of this crystal are shown in Fig. 2. The conditions limiting possible reflections in the corresponding hexagonal axis are as follows: h k i l: -h + k + l = 3n

n + n + n + n + n = 3n 0 = 0 = 0 = 1 h = n = 1 h = n = 1 h = n = 1

Taking account of the systematic extinction rules mentioned above, the possible space groups of $Al_4Si_2C_5$ could be R3m and R3m.

X-ray powder diffraction data

X-ray powder diffraction data for α -Al₄SiC₄ and Al₄Si₂C₅ were taken by Rigaku Geigerflex using CuK α X-ray radiation with Ni-filter and scintillation counter detector scanning at $2\theta - 1^{\circ}$ per 4 min. The X-ray reflections were collected in the range of 2θ from 5° to 110°, and then they were successfully indexed by taking account of the primary unit cell dimensions obtained from the single crystal X-ray method. Thus the calculated and observed planer spacings obtained, the observed 2θ , and their indexes are given in Tables I and II. Table I gives the data for α -Al₄SiC₄ and Table II those for Al₄Si₂C₅.

The unit cell dimensions were calculated by the least-square computer program. 31 reflections of α -Al₄SiC₄, which showed clear intensity peaks and

were not superposed on other reflections, were selected for the least-square calculation. The refined unit cell dimensions are as follows:

$$a = 3.2771 (\pm 0.0001)$$
Å

TABLE I X-ray powder diffraction data of α -Al₄SiC₄

hkl	d_{calc}	$d_{\mathbf{obs}}$	$2\theta_{obs}$
002	10.838	10.859	8.135
004	5.419	5.424	16.328
006	3.612	3.614	24.610
10 0	2.838	2.836	31.520
10 1	2.814	2.813	31.778
102	2.746	2.745	32.591
008	2.709	2.710	33.025
10 3	2.642	2.641	33.908
104	2.514	2.515	35.670
10 5	2.376	2.374	37.869
106	2.232	2.231	40.395
0010	2.168	2.168	41.625
107	2.092	2.092	43.210
108	1.960	1.960	46.291
10 9	1.836	1.836	49.613
1010	1.723	1.722	53.135
11 0	1.639	1.638	56.090
1012	1.524	1.524	60.720
201	1.416	1.416	65.900
204	1.373	1.373	68.270
205	1.349	1.349	69.65
206	1.321	1.321	71.340
1110	1.307	1.307	72.208
209	1.223	1.223	78.080
2012	1.116	1.116	87.278
0 0 20	1.084	1.084	90.600
21 1	1.071	1.071	91.938
214	1.052	1.052	94.125
216	1.028	1.028	97.00
219	0.980	0.980	103.62
30 0	0.946	0.946	109.02

TABLE II X-ray powder diffraction data of Al₄ Si₂C₅

hkl	d_{calc}	d _{obs}	20 obs
00 3	13.369	13.379	6.606
00 9	4.456	4.455	19.906
0012^{*}	3.342	3.352	26.648
10 1	2.807	2.806	31.833
10 2	2.788	2.787	32.073
0015	2.674	2.672	33.485
10 5	2.656	2.656	33.710
10 7	2.527	2.527	35.494
10 8	2.455	2.454	36.571
1010	2.304	2.303	39.053
1011	2.228	2.227	40 447
0018	2.220	0.00	10.117
1013	2.080	2.080	43.476
1016	1.872	1.872	48.586
1017	1.808	1.808	50.421
11 0	1.625	1.625	56.567
1022	1.530	1.530	60.442
1023	1.483	1.483	62.603
20 1	1.407	1.406	66.450
20 2	1.404		
20.5	1.309	1.388	67.410
20 3	1 355		
$10\overline{26}$	1 3 5 3	1.354	69.328
$20\frac{10}{10}$	1.328	1.328	70.881
$\left. \begin{array}{c} 2 \ 0 \ 1 \ 1 \\ 1 \ 1 \ 1 \ 8 \end{array} \right\}$	1.313	1.313	71.822
2013	1.281	1 000	74 01 5
1028	1.277	1.277	74.215
$20\overline{16}$	1.227	1.227	77.734
2017	1.209	1.209	79.157
$10\overline{32}$	1.145	1.145	84.549
2022	1.114	1.114	87.465
2 0 23 j	1.095	1.095	89.365
21 1)	1.064		
$21 \bar{2}$	1.063	1.062	92.906
1035	1.061		
21 8	1.041	1.041	95 448
2026	1.0.11	1.0.11	201110
2110	1.028	1.028	04.0
0039	1.028	1.028	96.979
2116	0.980	0.980	103.684
1040	0.945	0.945	109.261

* This reflection is affected by the presence of SiC as an impurity.

 $b = 21.676 (\pm 0.002) \text{\AA}$ $V = 201.60 (\pm 0.002) \text{\AA}^3$,

where V is the unit cell volume, and the values in parenthesis indicate the standard deviations.

25 reflections of $Al_4Si_2C_5$ which were not overlapped were used for the calculation of the least-square refinement of unit cell dimensions. The results obtained with corresponding hexagonal

578

lattices are as follows:

 $a = 3.2512 (\pm 0.002) \text{\AA}$ $c = 40.1078 (\pm 0.0027) \text{\AA}$ $V = 307.143 (\pm 0.044) \text{\AA}^3.$

5. Discussion

There is some crystal chemical similarity between SiC [5] and AlN [6], i.e. (i) metal atoms M (Si or Al) are tetrahedrally co-ordinated with non-metal atoms X (C or N) and they form the four sp^3 tetrahedral bonds which are normally associated with the valence state of these elements; (ii) Wurtzite structure of SiC and AlN is formed by cornersharing tetrahedra of MX_4 ; (iii) the size of each tetrahedra (SiC₄ and AlN₄) is almost the same. On the other hand, aluminium carbonitride is composed of three structural components of Al_2C_2 , AlN and Al_2C layers [7]. These three hexagonal layers stack alternately along the [0001] direction forming hexagonal close packing. Al₅C₃N structure consists of successive layers of Al_2C , AlN and Al_2C_2 , and $Al_6C_3N_2$ structure of AlN, Al₂C, AlN and Al₂C₂, respectively. If the SiC layers can be substituted for the AlN layers in aluminium carbonitride, the structure of aluminium silicon carbide will be formed. The very similar unit cell dimensions of aluminium carbonitride and aluminium silicon carbide suggest the validity of this assumption. The similarities of cell dimensions and space groups are shown in Table III.

Furthermore, in the case of Al₄SiC₄, the X-ray diffraction symmetry and extinction rules result from the following structural restrictions: (i) all atoms in the unit cell lie on three symmetrical axis of $[001]_{00}$, $[001]_{1/3,2/3}$ and $[001]_{2/3,1/3}$ in Niggli's notation, because of the existence of the 6_3 screw axis along the [0001] direction and the condition limiting possible reflections, i.e. h k i l: if h - k = 3n, then l = 2n; (ii) the sixfold symmetry along [0001] indicates that the hexagonal packing layers are stacked along the [0001] direction; (iii) if a mirror plane perpendicular to [0001] exists in the structure of $Al_2 SiC_4$, it violates the condition of close packing of MX₄ tetrahedron. Therefore, P6₃mc appears more likely than $P6_3/mmc$ as the possible space group of Al_4SiC_4 ; (iv) as is evident from Fig. 1, among the 0001 reflections, the strongest intensity was observed in $l = 10 \cdot n$, where n is an integral

Formula	Ζ	Space group	Cell dimension		c/a	Mean layer distance	
			a	с			
Al ₄ C ₃ AlN	2	$P6_3mc$	3.281	21.67	6.605	2.167	
Al ₄ C ₃ SiC	2	$P6_3mc$	3.2771	21.676	6.614	2.168	
$Al_4C_3(AlN)_2$	3	RĪm	3.248	40.03	12.33	2.224	
$Al_4C_3(SiC)_2$	3	R3 <i>m</i>	3.2512	40.108	12.34	2.228	

TABLE III Similarity of the unit cell dimensions and space groups of aluminium carbonitride and aluminium silicon carbide

number. Therefore, the structure of α -Al₄SiC₄ is composed of ten layers of MX₄ in the unit cell.

In the case of $Al_4Si_2C_5$, eighteen layers of MX_4 are stacked in the unit cell along the *c*-axis direction because the strongest intensity was observed in $l = 18 \cdot n$ among the 000*l* reflections.

Taking this into account, the structural models of aluminium silicon carbide were developed from the aluminium carbonitride structure [8], i.e. the structural model of α -Al₄SiC₄ was induced from Al₅C₃N and Al₄Si₂C₅ from Al₆C₃N₂. The X-ray diffraction intensity distribution I_c of each structural model was calculated and then

TABLE IV Observed (I/I_0) and calculated (I/I_c) relative intensity distributions of X-ray powder diffraction on α -Al₄ SiC₄

h k l	I/I _o	I/I _c
002	6	5.0
004	3	3.4
00 6	15	11.3
10 0	21	13.2
10 1	100	100.0
102	28	29.7
008	13	7.4
10 3	16	17.0
104	28	32.2
10 5	53	64.9
10 6	66	75.2
0010	71	54.6
10 7	5	6.3
10 8	5	5.3
10 9	35	39.0
1010	1	1.9
11 0	71	97.0
1012	26	29.7
20 1	5	8.6
204	4	6.5
20 5	7	10.8
206	8	12.8
1110	35	54.9
209	5	8.3
2012	5	9.4
214	2	2.8
21 6	5	5.7
21 9	5	4.4
30 0	7	16.9

TABLE V Observed (I/I_0) and calculated (I/I_c) relative intensity distributions of X-ray powder diffraction on Al_aSi, C₅

hkl	I/I _o	I/I _c
0.0.3*	12	7.0
00 9*	10	3.7
0012*†	90	10.5
10 1	71	70.2
10 2	59	59.4
0015^{*}	27	6.3
$10 \ \overline{5}$	31	34.8
10 7	5	3.0
10 8	41	60.4
1010	62	84.2
1011 0018*	100	88.1
1013	13	8.8
1016	25	30.5
1017	16	18.5
11 0	55	100.0
1022	11	14.8
1023	19	13.2
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	4	11.5
11 5	2	5.0
20°		
$\begin{bmatrix} 2 & 0 & 8 \\ 1 & 0 & \overline{26} \end{bmatrix}$	11	17.0
2010	7	13.0
2011	32	27.1
$20\overline{13}$	4	10.4
$\frac{1028}{2016}$	2	5.0
2010	2	5.0 4 0
$10\overline{32}$	- 1	2.9
0 0 36*	3	2.0
2023	3	4.7
21 1)		
$21\overline{2}$	3	9.4
1035 /		
2110	4	6.9
2116	1	3.1
1040	4	7.4

* Reflections affected by preferred orientation.

[†] Reflection affected by the presence of graphite as an impurity.

TABLE VI Proposed co-ordinates of α -Al₄SiC₄ and Al₄Si₂C₅. Atoms in asymmetric units are given

Atoms		α -Al ₄ SiC ₄			$Al_4 Si_2 C_5$		
	x	у	Z	x	у	Z	
Si (1)	0.0	0.0	0.155	0.0	0.0	0.0850	
Si (2)	_	_		0.6667	0.3333	0.2471	
Al (1)	0.3333	0.6667	0.045	0.6667	0.3333	0.0244	
Al (2)	0.3333	0.6667	0.261	0.6667	0.3333	0.1403	
Al (3)	0.0	0.0	0.345	0.0	0.0	0.1911	
Al (4)	0.3333	0.6667	0.455	0.0	0.0	0.3092	
C (1)	0.0	0.0	0.0	0.0	0.0	0.0	
C (2)	0.0	0.0	0.248	0.6667	0.3333	0.0740	
C (3)	0.3333	0.6667	0.367	0.0	0.0	0.1351	
C (4)	0.3333	0.6667	0.137	0.6667	0.3333	0.1975	
C (5)	_	_		0.0	0.0	0.2597	

compared with each observed intensity I_0 . These comparisons are tabulated in Tables IV and V for α -Al₄SiC₄ and Al₄Si₂C₅, respectively. As is evident from the tables, there is good agreement between I_0 and I_c in both aluminium silicon carbides. Such good agreement gives the validity of these proposal structural models of α -Al₄SiC₄ and Al₄Si₂C₅. The observed intensity distribution of 000*l* exceeded the calculated ones: this should be caused by the preferred orientation of the powder sample. The atomic co-ordinates of both aluminium silicon carbides thus obtained are given in Table VI. The details of the threedimensional X-ray single-crystal structure analyses will be reported elsewhere.

6. Conclusions

From the symmetry of single crystals of α -Al₄SiC₄ and Al₄Si₂C₅ and a comparison of the relative intensity distributions between observed and calculated powder X-ray diffraction lines, we conclude that the crystal structures of α -Al₄SiC₄ and $Al_4Si_2C_5$ may be formed by substituting SiC layers for AlN layers in the structures of Al_5C_3N and $Al_6C_3N_2$, respectively, and that the space group of the former is $P6_3mc$ and the latter is $R\overline{3}m$.

References

- 1. V. J. BARCZAK, J. Amer. Ceram. Soc. 44 (1961) 274.
- G. SCHNEIDER, "Gleichgewichtsuntersuchungen im System Si, Al, Be/C, N" (Doctral thesis at Stuttgart University, 1978) p. 45.
- 3. Y. INOMATA, H. TANAKA, Z. INOUE and H. KAWABATA, J. Ceram. Soc. Japan (to be published).
- 4. Z. INOUE, Y. INOMATA, H. TANAKA and H. KAWABATA, J. Mater. Sci. 15 (1980) 255.
- 5. R. F. ADAMSKY and K. M. MERZ, Z. Krist. 111 (1959) 350.
- J. A. KOHN, G. C. PERRY and R. A. POTTER, Amer. Min. 41 (1956) 355.
- 7. G. A. JEFFREY and V. Y. WU, Acta Cryst. 16 (1963) 559.
- 8. G. A. JEFFREY and V. Y. WU, ibid. 20 (1966) 538.

Received 28 June and accepted 24 July 1979.